【新智元导读】果粉Big Day!PyTorch宣布,原生支持苹果Mac GPU机器学习加速。与单CPU加速相比,训练性能提升6倍,推理任务性能最高提升21倍 对于搞AI和机器学习的苹果用户来说,今天无疑是个好日子。 如果是用PyTorch的苹果用户,可能更是盼了一年半的大日子!
在深度学习工程实践中,当训练大型模型或处理大规模数据集时,上述错误信息对许多开发者而言已不陌生。这是众所周知的CUDA out of memory错误——当GPU尝试为张量分配空间而内存不足时发生。这种情况尤为令人沮丧,特别是在已投入大量时间优化模型和代码后 ...
【导读】果粉Big Day!PyTorch宣布,原生支持苹果Mac GPU机器学习加速。与单CPU加速相比,训练性能提升6倍,推理任务性能最高提升21倍 对于搞AI和机器学习的苹果用户来说,今天无疑是个好日子。 PyTorch官网宣布,在与Metal工程团队合作后,很高兴地宣布支持Mac上的 ...
【新智元导读】用英伟达的GPU,但可以不用CUDA?PyTorch官宣,借助OpenAI开发的Triton语言编写内核来加速LLM推理,可以实现和CUDA类似甚至更佳的性能。 试问,有多少机器学习小白曾被深度学习框架和CUDA的兼容问题所困扰? 又有多少开发者曾因为频频闪烁的警报「 ...
点击上方“Deephub Imba”,关注公众号,好文章不错过 ! 随着NVIDIA不断推出基于新架构的GPU产品,机器学习框架需要相应地更新以支持这些硬件。本文记录了在RTX 5070 Ti上运行PyTorch时遇到的CUDA兼容性问题,并详细分析了问题根源及其解决方案,以期为遇到类似情况的 ...
想要了解自己的 PyTorch 项目在哪些地方分配 GPU 内存以及为什么用完吗?不妨试试这个可视化工具。 近日,PyTorch 核心开发者和 FAIR 研究者 Zachary DeVito 创建了一个新工具(添加实验性 API),通过生成和可视化内存快照(memory snapshot)来可视化 GPU 内存的分配状态。
更多精彩内容 请点击上方蓝字关注我们吧! 今年 3 月,苹果发布了其自研 M1 芯片的最终型号 M1 Ultra,它由 1140 亿个晶体管组成,是有史以来个人计算机中最大的数字。苹果宣称只需 1/3 的功耗,M1 Ultra 就可以实现比桌面级 GPU RTX 3090 更高的性能。 随着用户 ...
快科技10月31日消息,摩尔线程宣布,针对PyTorch深度学习框架的MUSA插件“Torch-MUSA”,迎来重大更新新版本v1.3.0,全面兼容PyTorch 2.2.0。 新版进一步提升了PyTorch在摩尔线程GPU MUSA架构上的模型性能与覆盖度,能更友好地支持模型迁移到摩尔线程GPU。 PyTorch是全球 ...
此功能由Pytorch与Apple的Metal工程团队合作推出。 它使用Apple的Metal Performance Shaders(MPS) 作为PyTorch的后端来启用GPU加速训练。 为了优化计算性能,MPS还针对Metal GPU系列的独特特性对每个内核进行了微调。 Metal是一个类似OpenGL的框架,只不过OpenGL适用于各平台的移动 ...
雷锋网按:本文作者天清,原文载于其知乎专栏世界那么大我想写代码,雷锋网获其授权发布。 把manager.py放到你训练的目录就行。 直接使用with gm.auto_choice()自动选择设备进行接下来代码块的操作。 随着深度学习技术快速的发展,深度学习任务的数据和计算规模 ...
7项指标排名第一。 JAX在最近的基准测试中的性能已经不声不响地超过了Pytorch和TensorFlow,也许未来会有更多的大模型诞生在这个平台上。谷歌在背后的默默付出终于得到了回报。 谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。
一些您可能无法访问的结果已被隐去。
显示无法访问的结果